
Accepted for: German-Tunisian Conference on Smart Systems and Devices (SSD)

Negotiation Scenarios between Autonomous Robot Cells
in Manufacturing Automation: A Case Study

Torsten Heverhagen, Rudolf Tracht
University of Essen, Germany
FB 12, Industrial Automation

{Torsten.Heverhagen|Rudolf.Tracht}@uni-essen.de

Abstract

Today’s industrial manufacturing systems have to
face the problem of fast changes in demand of
products and the product spectrum. One solution for
getting a more flexible structure of production lines
is the concept of autonomous and cooperative
production units, which is taken from the idea of
holonic manufacturing systems [1]. In such systems
productions requests are negotiated between
production units.
The specification and description of these
negotiation is a complex and error-prone task. This
paper introduces a negotiation protocol and its
specification with the object oriented specification
language UML-RT (Unified Modeling Language -
Real Time). The paper shows how a scenario-based
object oriented development process together with
event-driven simulation can help in validating
complex specifications at an early development
stage.

1. Introduction and Motivation

At the University of Essen an assembly line case
study is being developed, which consists of 3
autonomous, cooperative assembly robot cells, a part
storage, a product storage, a quality control system,
and a transport system. An outline of the case study
is shown in Figure 1.
The transport system consists of a belt conveyor on
which special pallets are mounted and a PLC. The
PLC is not shown in Figure 1. The special pallets are
prepared to take up parts and products for
transportation. Products consist of parts. In our case
study, one product is an electrical light switch for
surface mounting. A product of this type, for
example, consists of the parts switch box and switch
button.

The part storage is located at the beginning of the
production line. It consists of a storage area for parts
and a palletizing robot. When an assembly robot
needs parts, the transport system carries empty
pallets to the part storage, tells the part storage to put
the needed parts on the pallet and carries the pallet to
the assembly robot cell.
The assembly robot cell consists of a part storage
area, a product storage area, an assembly area, the
robot, and an industrial PC (IPC). The IPC (not
shown in Figure 1) manages and controls the
assembly robot cell. The object oriented IPC-
program is designed with UML-RT. The assembly
robot is able to:
(1) negotiate production requests
(2) take parts from a pallet and put it on the part

storage area,
(3) assemble the parts to a product, and
(4) put assembled products to a pallet or the product

storage area.
When an assembled product should be carried to the
quality control system, the IPC-program asks the
transport system for an empty pallet and tells it to
carry the product to the quality control system.
The quality control system consists of a vision
system with camera and image processor. It is
responsible for the decision if an assembled product
should be carried to the product storage or to the
rejects.
The product storage consists of a palletizing robot
and a product storage area.
Each assembly robot cell has the same product
spectrum. The number of assembly robot cells
working simultaneously depends only on the quantity
of demanded products. When this quantity exceeds
the capacity of all existing assembly cells, it is also
possible to extend the manufacturing system with
new assembly robot cells or to raise the productivity
of existing assembly robot cells with improved
components.

Accepted for: German-Tunisian Conference on Smart Systems and Devices (SSD)

In this paper we assume that
the number of existing
assembly robots is sufficient
for the maximum demand of
products. For the minimum
demand only one assembly
robot is needed. The decision
of how many robot cells are
working simultaneously is a
result of negotiations between
the autonomous robot cells.
There is no higher instance
which controls this decision.
The central idea of this
negotiation is that assembly
robots can dynamically enter
and leave the production
process whenever it is
necessary.
In this paper we propose a
negotiation protocol which
fulfills the requirements of
our case study. Another
aspect of this paper is the use of the object oriented
analysis and design language UML [2]. Most of the
figures in this paper are UML diagrams. Though we
explain UML syntax and concepts whenever used it
is out of the range of this paper to give a
comprehensive introduction into the UML. Some of
the UML concepts and diagram types belong to a
special UML extension which is called UML-RT [3].
We chose this extension because of its clear
separation between interface and implementation of
software components. The main concepts of UML-
RT are introduced in section 3.

Before we start with describing our negotiation
protocol we show how the requirements for our case
study are modeled with use cases (section 1.1). The
overall software architecture of our case study is
given in section 1.2 as an object diagram. In section
2 we pick the negotiation out of our use cases and
describe it more detailed with sequence diagrams.
Section 3 introduces structural modeling techniques
like class diagrams and structure diagrams. Section
4 uses statecharts for modeling behavior of software
components. In section 5 the software components
introduced in section 3 are discussed in more detail
together with considerations taken from section 4.
Sections 6 and 7 close the paper with an overview of
how the transition to implementation is done and
how sequence diagrams can be used to validate the
software model against the given requirements.

1.1. Requirements

Requirements are captured in the use case model. It
consists of use cases and actors. A graphical notation
is given in Figure 2. Use cases are rendered as
ellipses with solid lines. The name is displayed inside
or below the use case. Actors are rendered as stick
figures with the actors name below the figure.
Actors represent the users of the system to be
developed or modeled. In our case study the system
is the assembly line and one user is a production
planning and scheduling system (PPS). The PPS is
modeled as an actor called PPSActor. It sends
production requests (orders) to the assembly line and
receives status messages from the assembly line.
Use cases represent the functionality or services
which the system provides for its users (actors). Our

part storage assembly robot Y

assembly robot X assembly robot Z product storage

belt conveyor
with pallets

vision
system

quality control

explanation of symbols

robot

product storage
area

part storage area

assembly area

Figure 1. Outline of the assembly line case study

DVVHPEOH�VLQJOH�VZLWFKHV

DVVHPEOH�GRXEOH�VZLWFKHV

DVVHPEOH�VLQJOH�VRFNHWV

DVVHPEOH�GRXEOH�VRFNHWV

DVVHPEOH�FRPELQDWLRQ

336$FWRU

Figure 2. Use case diagram for the case study

Accepted for: German-Tunisian Conference on Smart Systems and Devices (SSD)

assembly line provides the PPS with the functionality
to assemble several products. For the production of
different products different flows of actions has to be
performed by the assembly line. This is the reason
why we modeled one use case for each product.
The description of a use case can be done with
natural language, formal structured text or
pseudocode. The use case model is the foundation
for the discussion with the customer about if the
system contains all requirements of the customer.
That’s why it should be understandable and readable
for the customer. It is the binding requirement
specification for the further development of the
system.
Each use case of the case study starts with an order
(production request) from the PPS. The first action in
each use case is the negotiation of the order.
In this paper we concentrate solely on the negotiation
of orders and leave out the main part of the use
cases: the assembling of products. But before we
come to the negotiations we must introduce the
overall software architecture of the system.

1.2. Software Architecture

While the use case model describes the overall
behavior of the system in term of use cases, the
software architecture describes the structure of the
system in terms of software components, their
interface and relationships.
For the purpose of this paper only short information
about our software component structure is needed. In
Figure 3 an object diagram is given, which shows the
top level components and their relationships. The
important real world objects of Figure 1 are
represented by objects (rendered as rectangle) in
Figure 3. Objects are instances of classes. The three
assembly robots X, Y, and Z are instances of the
class AssemblyRobot. They are called robotX,
robotY, and robotZ.
The key idea of our software architecture is the use
of a mediator for the linking of software
components. Without a mediator we had to establish
links between almost every object combination. This
would lead to less reusable software components.
The Mediator is a software design pattern which is
described in [4]. It is responsible for the correct
relaying of messages between system components.
Not for all objects of Figure 3 a class is specified. In
the further discussion of this paper we only need to
remember the assembly robots, the mediator and the
PPS.

2. Negotiation Scenarios

For each use case exists a comprehensive description
of the flow of actions which has to be performed to

realize the task of a use case. This flow of actions
can contain branches and loops. It should consider all
possible situations into which the use case may run.
A concrete flow of actions performed under a
concrete situation is called a scenario. Scenarios are
very helpful in capturing requirements in early
design stages.
The simplest scenario in one of our use cases takes
place, when the PPS sends an order which is
impossible to fulfill. A description of this scenario
could look like the following:
“The PPS sends at time 11 p.m. an order to the
assembly line about the production of 50 switches
within 1 hour. The assembly robots are at this time
work overloaded. Every assembly robot rejects the
order. One assembly robot tells the PPS about the
rejection of the order.”
With this rejection the scenario is over. This was a
complete scenario through the use case assemble
switches. Even with this simple scenario several
questions arise like: Which messages must be sent
between the assembly robots? Which assembly robot
sends the rejection to the PPS? If we remember, that
assembly robots may enter and leave the production
process, how does a robot know, how many
participants are in the negotiation?
For considering the first question a special diagram is
given in Figure 4, called sequence diagram. In
sequence diagrams the messages dispatched between
participating objects are shown with their time
ordering.
The objects displayed in Figure 4 are known from
the software architecture of Figure 3. Each column
represents an object. The object names are given at
the head of each column. The vertical dotted lines
below the object names are time lines for each
object. The time is increasing from top to down.
Horizontal lines with single sided arrows are
asynchronous messages. Rectangles at the end of
message arrows show that the message is processed
by the receiving object.
Conform to the software architecture every message
is dispatched over the mediator. At first the order is
submitted to each assembly robot with message
OrderSubmission. Next the robots discuss about the

mediator
: Mediator

robotX: AssemblyRobot

robotY: AssemblyRobot

robotZ: AssemblyRobot

part storage

product storage

quality control

transport system

PPSActor

Figure 3. Object diagram for the software architecture

Accepted for: German-Tunisian Conference on Smart Systems and Devices (SSD)

order. Because no one is able to assemble a switch at
this time, every robot sends the message
OrderRejection to each participant. At last robotX
sends the OrderRejection to the PPS.
Why robotX? The decisions made during the
negotiation are rule based. One rule is, that if all
assembly robots rejected an order, the robot with the
highest priority sends the decision to the PPS.
More about rules is given in section 4. Questions that
arise from the consideration of scenarios must be
answered and documented in the use case
descriptions. For most systems it is not possible to
describe all scenarios and sequence diagrams. In this
section we describe one more scenario for the
motivation of the following sections:
“The PPS sends at time 11 p.m. an order to the
assembly line about the production of 50 switches
within 1 hour. The assembly robots are at this time
idle. RobotX sends an offer to robotY and robotZ to
tell that it can fulfill the order completely. RobotY
also sends an offer to robotX and robotZ. RobotZ is
within one hour only able to assemble 30 switches.
Therefore it sends an offer for cooperation to robotX
and robotY. Because robotX has a higher priority
than robotY it gets the order. RobotY and robotZ
send an OrderRejection to robotX and each other.
RobotX sends an acknowledgement for the order to
the PPS.”
This scenario is no complete flow through the use
case assemble switches, because the actions for the
assembling of the switches are left out.
The scenario shows, that assembly robots can
cooperate in processing an order. One aim of the
negotiation is that only a minimum number of
assembly robots is used. Higher priority robots are
preferred even if they have to cooperate.
The next two sections explain, how structure and
behavior of the system is modeled to meet the
requirements defined in the use case model.

3. Introducing the Negotiator Capsule

Classes are the most important concept of object
orientation. They define the behavior and
structure of their instances. Normally classes
contain attributes and operations and have
relationships with other classes. The UML
contains mechanisms to extend or specialize
classes. This mechanism is called stereotyping.
A class that is extended or specialized is called a
stereotype. Actors and use cases, for example,
are stereotypes.

UML-RT provides three additional stereotypes:
capsules, ports, and protocols.
A capsule is an active class. The difference to a
normal class is the interface description. While
normal classes describe their interfaces with
operations (and perhaps attributes and relationships),
capsules define ports for this reason.
A port is used by a capsule to send messages to ports
of other capsules. A capsule can also contain other
capsules. This is modeled by an aggregation
relationship. Figure 5 shows four capsules
(AssemblyLine, AssemblyRobot, Mediator, and
Negotiator).
Capsule AssemblyLine represents the complete
assembly line. It contains three instances (robotX,
robotY, and robotZ) of capsule AssemblyRobot and
one instance of capsule Mediator (mediator). The
port ppsPort is used to send and receive messages to
and from the PPS.
Capsule AssemblyRobot has three ports. Port ppsPort
is connected over the mediator with the ppsPort of
the assembly line. Connections of different ports are
not shown in class diagrams, but in structure
diagrams like in Figure 6, which is discussed later.
During negotiation an assembly robot has to send
and receive messages simultaneously. For this reason
we decided to define two ports for the negotiation,

336$FWRU
���PHGLDWRU
���0HGLDWRU

���URERW;
���$VVHPEO\5RERW

���URERW<
���$VVHPEO\5RERW

���URERW=
���$VVHPEO\5RERW

2UGHU6XEPLVVLRQ 2UGHU6XEPLVVLRQ
2UGHU6XEPLVVLRQ

2UGHU6XEPLVVLRQ

2UGHU5HMHFWLRQ
2UGHU5HMHFWLRQ

2UGHU5HMHFWLRQ

2UGHU5HMHFWLRQ

2UGHU5HMHFWLRQ
2UGHU5HMHFWLRQ

2UGHU5HMHFWLRQ

2UGHU5HMHFWLRQ
2UGHU5HMHFWLRQ

2UGHU5HMHFWLRQ2UGHU5HMHFWLRQ

Figure 4. Sequence diagram for the simplest scenario

0HGLDWRU

SSV3RUW
QHJRWLDWLRQ2XW3RUW
SSV�URERWV3RUW
QHJRWLDWLRQ,Q3RUW

�IURP�&DSVXOHV� 1HJRWLDWRU

SSV3RUW
QHJRWLDWLRQ2XW3RUW
QHJRWLDWLRQ,Q3RUW

�IURP�&DSVXOHV�

$VVHPEO\5RERW

QHJRWLDWLRQ2XW3RUW
SSV3RUW
QHJRWLDWLRQ,Q3RUW

�IURP�&DSVXOHV�

QHJRWLDWRU

$VVHPEO\/LQH

SSV3RUW
�IURP�&DSVXOHV�

URERW;

URERW<

URERW=

PHGLDWRU

Figure 5. Class diagram for capsules

Accepted for: German-Tunisian Conference on Smart Systems and Devices (SSD)

one for outgoing and one for incoming messages,
called negotiationOutPort and negotiationInPort.
Capsule Mediator contains the necessary ports for
relaying messages from assembly robots to the PPS
and between them.
The capsule AssemblyRobot is responsible for very
different tasks: the negotiation, the management of
accepted orders, and the assembling. In such cases it
is a good idea to separate responsibilities into
different capsules. So a capsule called Negotiator is
modeled, to which the assembly robot delegates all
responsibilities for the negotiation.
To show how ports are connected with other ports
UML-RT introduces a new diagram type: the
structure diagram. Figure 6 shows the structure of
the capsule AssemblyLine. A structure diagram is an
extended object diagram. Ports of instantiated
capsules are connected with solid lines.
The specification of which messages can be sent
through ports is done with protocols. Protocols
define a set of incoming and outgoing messages.
This messages are called signals. Figure 7 shows a
protocol called PPS_Protocol, which contains two
incoming and one outgoing signal. Signals
OrderRejection and OrderSubmission are known

from Figure 4. This protocol is
mapped to all ports called
ppsPort and pps2robotsPort.
The other ports are mapped to
the NegotiationProtocol which
is more complex and discussed
in section 5.
The next section explains how
behavior of capsules is

modeled. Because we only concentrate on the
negotiation, we only have to consider the Negotiator
capsule.

4. Modeling Behavior of the Negotiator

Until now we have described, how requirements
and the structure of the software system are
modeled.
Behavior of objects is modeled with statecharts.
Different modeling tools for UML provide slightly
different notations and capabilities for statecharts.
We used the tool “Rational Rose RealTime” [5] for
our models, in which the statecharts are similar to
ROOM-charts [6], incorporate the programming
language C++, and are executable.
Figure 8 shows the top level statechart of the
capsule Negotiator. It consists of four states and
the initial point. The first state wait_for_order is a
wait state. The transition receiveOrder fires, if an
OrderSubmission is received through port ppsPort.
State collect_ackns is for the question in section 2,

“How many participants are in the negotiation”.
Every assembly robot has to acknowledge the order

to all other assembly robots. The transition
acknPhaseOver must fire synchronously in all
participating assembly robots. During state
collect_responses all participants send their offer,
rejection, or cooperation offer to each other. After
every response is collected, the transition
responsesComplete fires. This should also happen
synchronously. During the negotiation state, the
responses are compared and possible cooperations
are established.
Statecharts are hierarchical. Figure 9 shows the sub-
statechart of state negotiation. The rules necessary
for decisions during negotiation are modeled as
choice points. For example the choice point
only_rejections evaluates to true, when the simple
scenario of section 2 happens.
If we look at the second scenario of section 2, then
the negotiation sub-statechart of assembly robot X
would go from only_rejections over False to
did_I_reject, over False to criteria1, over
takeFirstOffer to am_I_winner, over sendAcceptance
to negotiationOver.
To every transition an action can be attached. We
modeled these actions as operations of the Negotiator
capsule. During modeling the behavior, which we
outlined in this section, the structure of our capsules

���PHGLDWRU���0HGLDWRU

���URERW;���$VVHPEO\5RERW

���URERW<���$VVHPEO\5RERW

���URERW=���$VVHPEO\5RERW

SSV3RUW

SSV3RUW

QHJRWLDWLRQ2XW3RUW

SSV�URERWV3RUW

QHJRWLDWLRQ,Q3RUW

QHJRWLDWLRQ2XW3RUW

SSV3RUW

QHJRWLDWLRQ,Q3RUW

QHJRWLDWLRQ2XW3RUW

SSV3RUW

QHJRWLDWLRQ,Q3RUW

QHJRWLDWLRQ2XW3RUW

SSV3RUW

QHJRWLDWLRQ,Q3RUW

Figure 6. Structure diagram for the assembly line

Figure 7

ZDLWBIRUBRUGHU FROOHFWBDFNQV

FROOHFWBUHVSRQVHV
QHJRWLDWLRQ

,QLWLDO UHFHLYH2UGHU

DFNQ3KDVH2YHU

UHVSRQVHV&RPSOHWH

QHJRWLDWLRQ2YHU

Figure 8. Top level statechart of the negotiator

Accepted for: German-Tunisian Conference on Smart Systems and Devices (SSD)

became also more detailed. For this aspect the next
section is dedicated.

5. The Resulting Negotiator Capsule

Modeling the behavior of capsules also results in a
more elaborated class structure. This means, that the
capsule now has about 40 new operations, attributes,
and helping classes like sorted collections or data
classes associated with it. The NegotiationProtocol
now contains 8 outgoing signals (Figure 10).
Protocols can be conjugated, so that the signal

direction is inverted. The port
negotiationInPort is mapped to
the conjugated Negotiation-
Protocol. To every signal a data
class can be attached. These data
classes are normal classes and no
capsules.
The negotiator also needs a port
to the order management of the
assembly robot. This is left out in
the paper.

6. Implementation and Testing

UML offers component and deployment diagrams
for documenting implementation specific things. For
programming of operations, actions, and choice
points we used C++. With this, the model can be
compiled and run. During execution the statecharts
of capsules are monitored. It is possible to record
traces about signals sent and received by capsules.
These traces can be transformed into sequence
diagrams.
One possibility of validating the modeled behavior
against requirements is to compare the monitored
sequence diagrams with the “ideal” sequence
diagrams, which are documented for the use case
scenarios. An outline of this process is shown in
Figure 11.

7. Summary

The development of negotiating assembly robots is
an ongoing work in our department. Its complexity
demanded the application of analysis and design
techniques like UML. Especially extensions made by
UML-RT improved the applicability of UML in the
area of manufacturing automation. For the
integration with existing PLC environments Function
Block Adapters are proposed in [7].

8. References
[1] Holonic Manufacturing Systems

http://hms.ifw.uni-hannover.de/
[2] G. Booch, J. Rumbaugh, I. Jacobson, UML Users

Guide, Addison-Wesley, 1999.
[3] B. Selic, J. Rumbaugh,

“Using UML for Complex Real-Time Systems”,
http://www.objectime.com/otl/technical/umlrt.html

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns, Addison Wesley, 1995.

[5] http://www.rational.com
[6] B. Selic, G. Gullekson, P.T. Ward, Real-Time Object-

Oriented Modeling, Wiley, New York, 1994.
[7] T. Heverhagen, R. Tracht, “Integrating UML-

RealTime and IEC 61131-3 with Function Block
Adapters”, IEEE Int. Symp. on Object Orient.
Realtime Computing (ISORC2001), to appear.

Figure 9. Sub-statechart of state negotiation

Figure 10

Sequence diagrams
from requirements
analysis

Structural and
behavioral
modeling

Simulation of
the modeled
behavior

Trace sequence
diagrams

Stimuli from
requirements
analysis

Compare traced
and required
sequence diagrams

?

Figure 11. Validation activities

