

Using Graph Rewrite Systems for supporting the Software
Design Process by Þnding suitable Software Components

Bettina Sucrow and Torsten Heverhagen

Data Management Systems and Knowledge Representation, Dept. of Mathematics and Computer Science,

University of Essen, Germany

{sucrow | the}@informatik.uni-essen.de

ABSTRACT

Software engineers have to decide permanently during the software design process whether to spec-
ify every necessary software portion of the system to be designed entirely themselves or, rather, to
search for and possibly substitute a corresponding suitable software portion already existing and
functioning well.
Our approach investigates the latter possibility in the following sense: if we presume that software
engineers specify their software components in a similar way then it should be possible to compare
only abstractly speciÞed components with already concretely speciÞed ones with the goal of substi-
tuting the former by the latter, respectively, rather than specifying the whole system in every detail.
However, such an approach has only a chance to really work correctly if it is possible to describe a
software design process of such a kind by a method offering an

intuitive understanding

, a

formal
basis

and even, Þnally, a

practical

result

. Our idea is to use graph rewrite systems for this purpose.

1 Introduction

Software engineers have to decide permanently during the software design process whether to specify every nec-
essary software portion of the system to be designed entirely themselves or, rather, to search for and possibly sub-
stitute a corresponding suitable software portion already existing and functioning well. In this contribution we
propose to support the software engineer during the software design process by the possibility of search for and
substitution of suitable software components wrt the current design. The idea is that the designer speciÞes some
portions of the system to be developed very abstractly with the goal of using these as templates or patterns in
order to search for corresponding concretely speciÞed software components to be integrated into the design.

Such a process can only function under the presumption that it can be expressed by a suitable formalism. This
means the respective formalism to offer understandability in order to preserve the intuitive idea of the given prob-
lem, a mathematical foundation in order to allow correctness and consistency proofs whenever desired or needed,
and, Þnally, the practical side, namely, the possibility to automate the whole process. It will be shown in this paper
that graph rewrite systems nicely fulÞl all these requirements.

Graph rewrite systems have been used successfully as speciÞcation formalism in the software design area in vari-
ous ways. Engels et. al. (1983) and Engels et. al. (1989) have described a software development environment with
graphs as central data structures for the programming language Modula-2. Here, graphs are related directly to the
syntax graphs deÞning the underlying programming language. Goedicke (1993) uses graph grammars for describ-
ing module concepts in structured and object-oriented programming languages focusing on the semantics of such
concepts. Richter (1995) uses graphs representing object-oriented source code in order to conduct object-oriented
design from an abstract level to a detailed level of implementation. Besides the so-called class structure graphs,
however, graph rewrite rules specifying reuse guidelines are only mentioned as a topic for future work.

Graph grammar descriptions have also been used in the area of graphical user interface speciÞcation. In AreÞ et.
al. (1991) a customized user interface design environment is generated. First, a conceptual framework for task-ori-
ented user interface speciÞcation is speciÞed as a visual language. The speciÞcation is then applied to a visual lan-
guage generator so that a visual syntax-directed editor for the speciÞcation language is generated. In this approach
the visual language is speciÞed with graph transformation systems. SpeciÞcation and representation of user inter-
faces based on end user tasks using attributed graphs and related graph rewriting systems may also be found in
Freund et. al. (1992). In order to achieve expressive as well as understandable graphical user interface speciÞca-
tions graph grammars have been used in Goedicke and Sucrow (1996) where graphs describe dialogue states and
graph rewrite rules dialogue state transitions. In Nowak et al. (1996) and Sucrow (1996A) this approach has been
used in order to formalize a part of the graphical user interface of a complex numerical computation system.

The formal notation of graph grammars is also suitable for achieving a continuous speciÞcation process between
the requirements and the design stages. Sucrow (1996B) and Sucrow (1998A) show an approach for integrating

Idea and Preparations

software-ergonomic aspects in formal speciÞcations of graphical user interfaces in order to improve the com-
fort for the user. The idea is to describe a graphical user interface by a still abstract graph grammar in early
speciÞcation stages and to relate this speciÞcation step by step to a concrete graph grammar description speci-
fying additionally speciÞc software-ergonomic features like certain metaphors, etc. This idea of relating
abstract graph grammar speciÞcations with more concrete ones could be extended in Sucrow (1997). Here,
human-computer interaction is speciÞed by a graph grammar already at very early speciÞcation stages, and an
approach is presented how this abstract graph grammar can be reÞned successively to a desired concrete one
by applying certain graph rewrite rules. For this purpose of reÞnement an approach has been presented in
Sucrow (1998B) allowing to reÞne graphs as well as graph rewrite rules specifying a still abstract interactive
system to a more concrete one by applying speciÞc graph rewrite rules at a certain meta level.

However, in neither of these approaches graph rewrite systems have been used to support the software design
process by searching purposely for already concretely speciÞed software components and substituting them
for still abstractly speciÞed ones in a software system to be speciÞed. This goal is realized in our approach: the
two steps of applying a graph rewrite rule -- the matching of its left hand side into the graph to be modiÞed and
the subsequent substitution of the match by its right hand side -- are used for the search for a suitable compo-
nent desired wrt a particular software design existing so far and for the substitution of such a component at the
correct place in this design respectively.

This contribution is organized as follows. In the next chapter 2 the idea of our approach is presented. Addition-
ally, some necessary preparations are considered wrt such a software design process. In chapter 3 an example
speciÞcation is introduced for demonstrating our approach of search for and substitution of software compo-
nents during the software design process. In chapter 4 we present the formal basis, that is, we show how our
approach of search for and substitution of software components can be speciÞed formally by graph rewriting
according to the algebraic double pushout approach. The practical side then is discussed in chapter 5 where it
is demonstrated how correct graph rewrite rules realizing the search and substitution process according to our
idea can be generated. Even, an automation wrt to tool support is conceivable. In chapter 6 main challenges
resulting for future research are presented and, Þnally, we come to conclusions.

2 Idea and Preparations

In this paper a new approach is proposed for supporting the software engineer during the software design proc-
ess. The idea is to allow particular portions of the intended software system to be speciÞed only very
abstractly. In order to concretize these parts of the system it shall be possible to search for corresponding, con-
cretely speciÞed and already existing software components. For this search the abstractly speciÞed component
will be used as a search pattern. In case of Þnding a corresponding concretely speciÞed component it shall be
possible to substitute it for the original pattern within the system to be designed.

In order to achieve a really helpful support for the software design process our approach shall be applied
already in early design stages. Additionally, it is a necessary condition that the software portions to be
searched for as well as the corresponding search patterns, the abstractly speciÞed components, have to be com-
parable up to a certain degree. According to these two requirements we assume the software engineers to spec-
ify their intended systems with the aid of an object-oriented design method. Also, the software components to
be searched for are assumed to be speciÞed by an object-oriented design method. Correspondingly, the nota-
tions will be object-oriented, of course, and of either kind like OMT (cf. Rumbaugh et.al. (1991)), OOSE (cf.
Jacobsen et.al. (1992)), OOA/OOD (cf. Booch (1994)), UML (UniÞed Modeling Language, cf. Booch et.al.
(1997A)) as a merging of the former three, and several others.

There are some important problems which will not belong to the focus of this paper. One of those is related to
how the various object-oriented design notations can be

uniÞed

 in such a manner that software components
speciÞed by either of those are still comparable. Similarly, a second one concerns the fact that two software
components, a search pattern and a corresponding detailed described component, may have been speciÞed
using different vocabularies. In such a case according to our idea the latter shall be substituted for the former
one within the system to be speciÞed

despite

this fact. For these and similar problems there exist solution ideas
already, which will not be discussed in detail here but belong to ongoing work and are sketched in chapter 6.

In order to introduce our approach in a more detailed way we will demonstrate a small case study using the
object-oriented and multiple used notation UML. Suppose, the designer speciÞes a portion of a bank system
where a bank server serves banks possessing accounts which, in turn, can be accessed by customers via auto-
matic teller machines. Then, with the aid of an abstractly speciÞed component describing an automatic teller
machine, it is searched for a corresponding concretely speciÞed component. After Þnding a respective suitable
component it is substituted into the system for the abstract one existing so far.

The approach presented here may be used later on in a realistic environment like the internet in the following

Graph Rewriting as an intuitive Basis

manner. Imagine software designers sitting at the screen and specifying their systems. If such a designer spec-
iÞes a bank system as mentioned above a component like an automatic teller machine may be speciÞed only
very abstractly with the goal of using this as a search pattern for a particular internet search machine. Such a
machine according to our approach would search for a corresponding concretely speciÞed automatic teller
machine by using the given pattern for comparison. After Þnding a suitable component the machine would
suggest it to the designer for substitution, the speciÞcation as well as the corresponding source code.

In this paper, however, the focus lies on the theoretical foundations of search for and substitution of desired
software components according to the idea presented above. In the next chapters a case study concerning the
speciÞcation of a bank system is demonstrated. The speciÞcation process will be described in an

intuitive

 man-
ner by presenting the UML speciÞcation process Þrst, in a

formal

 manner by realizing this approach with the
aid of graph rewriting according to the algebraic double pushout approach and, Þnally, in a

practical

 manner
by generating a corresponding graph rewrite rule allowing, Þnally, the automation of the intended search for
and substitution of an automatic teller machine.

3 Graph Rewriting as an

intuitive

 Basis

The following UML class diagram speciÞes a part of a bank system. A bank server may serve at least no or at
most many banks. The class

BankServer

 has three methods

registerBank

,

unregisterBank

, and

readCustomerInfo

, the last of which has three formal parameters

KNo

,

BNo

 and

PIN

 of type integer. The
last method also allows, e.g., a component ATM denoting an automatic teller machine to offer informations
about a speciÞc customer, that is her or his account code, code of the bank and PIN number to be tested by the
bank server. Vice versa a bank may serve at least no or at most many bank servers. The class

Bank

 besides
methods has variables

name

 and

address

 identifying the institute. As can be seen there are also classes
specifying accounts and customers having speciÞc relationships to the bank and to each other respectively.

As may be observed there exist parts in the class diagram which are presented differently. The grey shadowed
part, an only very abstractly speciÞed component

ATM

 together with a still unspeciÞed relationship to the

BankServer

, denotes a part of a search pattern. The designer has specified only very abstractly the desired
component realizing an automatic teller machine with the goal of using this subspeciÞcation as search pattern
in order to Þnd a corresponding concretely speciÞed component. Additionally, the search pattern contains also
the method

readCustomerInfo

 presented in bold font with its formal parameters

KNo

,

BNo

 and

PIN

 of
type integer specifying the interface required between an automatic teller machine and the remaining system.

Imagine now the designer searches for a concretely speciÞed component realizing an automatic teller machine
under the condition that it fulÞls the connection to the interface as described above. The respective search pat-
tern would be speciÞed by the parts presented grey shadowed and in bold font above. We expect the designer
to possibly Þnd the desired software component somewhere where it may be offered. Such a component could
be speciÞed like in the UML class diagram below. It shows the desired component consisting of the grey shad-
owed part again. Here, the automatic teller machine is denoted

ATMachine

 and is extended by two methods.
Further, it has associations to other classes specifying the device for reading the cheque card, the safe both of
which have inherited from a class specifying an ID device, and the user interface. Thus, the grey shadowed
part of the speciÞcation represents a concretely speciÞed component. The fact that

ATMachine

 is another
word compared to

ATM

 in the search pattern shall not disturb here. As mentioned above we are currently inves-
tigating several approaches allowing to compare semantically equivalent components although they may be
possibly expressed using different vocabularies (cf. chapter 6). The same yields for the interface

readcus-
tomerinfo

 together with its three formal parameters

kno

,

bno

 and

pin

 of type integer, which behaves

registerBank()
unregisterBank()
readCustomerInfo(int KNo, int

� BNo, int PIN)

BankServer

createAccount()

deleteAccount()
listAccount()

Bank

name: string

address: string

0..*

serves

0..*

getCustomer()

withdraw()
deposit()

Account

accountNumber: string

creationDate: date

1

owns

0..*
getAccounts()

Customer

name: string

address: string

0..*

holds

1..*

ATM

Graph Rewriting as an intuitive Basis

exactly like the corresponding one speciÞed by the search pattern.

The component in the diagram above is found due to the speciÞcation of the search pattern containing both
aspects, the abstractly speciÞed component

ATM

 as well as the complete interface

readCustomerInfo

.
Suppose now, the concretely speciÞed component is substituted into the currently developing system, then this
would result in the following extended speciÞcation containing now the found component instead of the class

ATM

 under the condition that the interface

readCustomerInfo

 is used by class

ATMachine

.

Considering the above described step of software development leads to the following observations:

¥ UML class diagrams are nothing else than graphs.

¥ Changes of UML class diagrams are nothing else than graph rewriting.

¥ A search pattern may be characterized by the left hand side

L

 of a graph rewrite rule, and its applica-
tion for the search process by matching

L

 in a graph to be modiÞed. The right hand side

R

 of this
graph rewrite rule may characterize the part that may be substituted for the match.

These observations encouraged us to use graphs and graph rewriting as an intuitive, a formal and, Þnally, as a
practical foundation for searching concretely speciÞed software components with the aid of abstractly speci-
Þed ones and substituting them for the latter ones into the system to be speciÞed. In the next chapter 4 the

BankInterface
0..1 0..*

enterPIN(int code)

ATMachine

startTransaction()

1 1
readPIN()

UserInterface

chooseAmount()

readCard()

CardReader

enterCode(int code)

Safe

disburse(money m)

Balance: money = 1000000

IDdevice

BOOLidentification(int id)

DeviceNumber: int

readcustomerinfo(int kno, int
� bno, int pin)

0..1 0..*
enterPIN(int code)

ATMachine

startTransaction()

1 1
readPIN()

UserInterface

chooseAmount()

readCard()

CardReader

enterCode(int code)

Safe

disburse(money m)

Balance: money = 1000000

IDdevice

BOOLidentification(int id)

DeviceNumber: int

BankServer

createAccount()
deleteAccount()
listAccount()

Bank

name: string
address: string

0..*

serves

0..*

getCustomer()
withdraw()
deposit()

Account

accountNumber: string
creationDate: date

1

owns

0..*
getAccounts()

Customer

name: string
address: string

0..*

holds

1..*

registerBank()
unregisterBank()
readCustomerInfo(int KNo, int

� BNo, int PIN)

Graph Rewriting as a formal Basis

algebraic double pushout approach will be used in order to formalize the process described above.

4 Graph Rewriting as a

formal

 Basis

We use graph transformation according to the algebraic double pushout approach (cf. Rozenberg (1997)).
ModiÞcations of graphs by a rewrite rule according to this approach are modelled by gluing constructions of
graphs that are formally characterized as pushouts in suitable categories having graphs as objects and total
graph morphisms as arrows. A graph rewrite rule

p

 is given by a pair of graph homomorphisms from a com-
mon interface or gluing graph

K

(see Þgure below), and a direct derivation consists of two gluing diagrams of
graphs and total graph morphisms, see diagrams (1) and (2). The context graph

C

 is obtained from the given
graph

G

 by deleting all elements of

G

 which have a pre-image in

L

 but none in

K

. This deletion is modelled as

an inverse gluing operation by diagram (1), while the actual insertion into

H

 of all elements of

R

 which do not
have a pre-image in

K

 is modelled by the gluing diagram (2). The match

m

 must satisfy the so-called gluing
condition which takes care that the context graph

C

 will have no dangling edges and that every element of

G

that should be deleted by the application of

p

 has only one pre-image in

L

. In our approach it is intuitively very
helpful as well as formally correct to identify interfaces in the context of search for and substitution of soft-
ware components as described in the previous chapter 3 as parts of the gluing graph

K

.

After the decision of using the double pushout approach as formal speciÞcation method the next step is to cor-
rectly map graphs and graph rewrite rules onto our problem domain. This means to correctly specify UML
class diagrams by graphs and changes of UML class diagrams by graph rewrite rules as observed already in
chapter 3. Besides our goal of specifying any object-oriented design formally by graphs and graph rewriting as
mentioned in chapter 2 already it should be pointed out that many researchers currently are investigating the
semantics of UML. One of the most interesting contributions from our point of view is presented by Gogolla
and Parisi-Presicce (1998) who show how to transform UML state diagrams into graphs by making explicit
the intended semantics of the diagrams. Other approaches are also refered to in this paper. For the purpose of
our approach, however, a formalization of UML class (and later also other) diagrams as well as a formalization
of changes of those by suitable graphs and corresponding graph rewrite rules, respectively, is needed.

4.1 Statics: Graphs specifying UML Class Diagrams

In the following picture an intuitive and understandable description of the class

BankServer

 on the left side
is given by the graph on the right side. The class is speciÞed by a node of a particular type sketched by a rec-

tangle and identiÞed by the name of the class. The node has a directed edge to a node of another type specify-
ing the method

readCustomerInfo

 the formal parameters of which are attached as attributes to it together
with their respective types. Similarly, the relationship between the two classes

BankServer

 and

Bank

below may be speciÞed by the following graph connecting the two graphs describing the two classes by two

directed edges respectively. The edges are attached by the attribute

serves

 specifying the kind of relationship
the two classes have to each other.

With these intuitive formal speciÞcations of UML class diagrams by graphs it is now possible to specify the
dynamics relating to search for and substitution of software components during the software design process by
graph rewrite rules.

L K Rl r

G C H

m

l * r*

c m*(1) (2)

BankServer

readCustomerInfo(int KNo, int
� BNo, int PIN)

BankServer

(BNo, int)
(PIN, int)

(KNo, int)
readCustomerInfo

BankServer
serves

Bank

name: string

listAccount()
readCustomerInfo(int KNo, int

� BNo, int PIN)

(BNo, int)
(PIN, int)

(KNo, int)
readCustomerInfo

BankServer Bank

listAccount

name string

serves

Graph Rewriting as a formal Basis

4.2 Dynamics: Graph Rewrite Rules specifying Changes of UML Class Diagrams

Specifying the system designed so far by a software engineer as described by the Þrst UML class diagram in
chapter 3 results in the following graph

G

 where the nodes specifying the classes

Bank

,

Account

 and

Cus-
tomer

, respectively, are not fully specified due to clarity. The two parts represented in bold font and grey
shadowed in the UML diagram are easily identiÞable in graph

G

. These two together constitute the search pat-
tern so that they may be described formally as the left hand side

L

 of a particular graph rewrite rule. This is due
to the nice possibility of using this graph

L for the necessary match in order to Þnd a more concretely speciÞed
corresponding component. Further, the part in bold font describing the required interface (cf. chapter 3) may
be speciÞed as an anchor, the graph K of this particular graph rewrite rule, which must not be changed by a
possible later substitution. Due to clarity, the graphs L and K are presented below additionally.

Correspondingly, the found component (cf. the second UML class diagram in chapter 3) looks like the follow-
ing graph where not every node specifying a class is entirely described again, due to clarity. Here, the interface

again appears in bold font and is not to be substituted as opposed to the grey shadowed part of the found com-
ponent. If we think about a possible substitution it is intuitively helpful to identify the found component by the
right hand side R of the graph rewrite rule described above where R also integrates the part in bold font. Again
this latter part may play the role of an anchor element necessary as requirement for Þnding the component on
the one side, but which must not be substituted on the other side. Again, graphs K and R are sketched addition-
ally above. It should be repeated at this point that different words within two graphs to be compared do not
result in a problem due to our investigations wrt uniÞcation of words in a certain sense (cf. chapter 6).

A substitution of the found concretely speciÞed component for the abstractly speciÞed one used as search pat-
tern would look like the graph H (cf. the third UML class diagram in chapter 3) below where the original inter-
face has remained as intended.

Obviously, the above described step during the software design process may be speciÞed formally by a graph
rewrite rule p consisting of the above introduced three parts L, K and R according to the double pushout
approach. However, the rule p is not yet known during the stage of searching. But, as can be observed, every
single part of the rule is evolving early enough before its necessary application. Thus, a graph rewrite rule p

BankServerreadCustomerInfo ATML

BankServerreadCustomerInfoK

(BNo, int)
(PIN, int)

(KNo, int)

(BNo, int)
(PIN, int)

(KNo, int)

BanklistAccount

namestring

BankServerreadCustomerInfo

serves

Account
owns

Customer
holds

ATM

addressstring

G

(BNo, int)
(PIN, int)

(KNo, int)

Found Component

enterPIN

BankInterfacereadcustomerinfo ATMachine

code startTransaction

UserInterface

readCard Safe

IDdevice

(bno, int)
(pin, int)

(kno, int)

K
BankInterface(bno, int)

(pin, int)

(kno, int)
readcustomerinfo

R
BankInterface

code

UserInterface(bno, int)
(pin, int)

(kno, int)
readcustomerinfo

IDdevice

readCard Safe

ATMachine

enterPIN startTransaction

Graph Rewriting as a practical Basis

realizing the search for and substitution of a software component according to our approach may be generated

successively so that, Þnally, this step of the speciÞcation process even may be automated (cf. next chapter 5).

5 Graph Rewriting as a practical Basis

In chapter 3 we presented an important step of the software design process according to our idea of search for
and substitution of software components in an intuitive manner. In the last chapter 4 it has been shown how
this step can be formalized. However, this approach is only helpful if it can be applied practically. Thus, it has
to be investigated how a graph rewrite rule p realizing the above described steps could be generated during the
evolving software design process. According to the intuitive as well as formally correct proceeding described
above this could happen in the following way, G being the graph currently existing as a particular design.

Graph Rewrite Rule Generation

¥ Determine in G graph L specifying the abstractly speciÞed component in comparison of which a cor-
responding concretely speciÞed one has to be searched for.

¥ Determine in subgraph L of G graph K that is the interface or anchor elements.

¥ Search for L in offered components that is perform a graph match with the aid of L.

¥ Try to Þnd a concretely speciÞed component according to the match by graph L. Identify a possibly
found match as graph R to be substituted within graph G for graph L where graph K remains
unchanged by deÞnition.

This approach works under the assumption that the found component is offered as a whole and not as subpart
of a more complex system. It is assumed that components are offered exactly for the purpose of searching for
them in order to substitute them into a software system being currently under design.

With the aid of the above described rule generation it is possible to construct algorithms realizing our software
design approach. A sketch of an algorithm is given subsequently in a very coarse manner.

Automation

¥ Delete within graph G

* all connections between graph L and graph K

* L\K

¥ Add within graph G

* R\K

* all connections between graph R and graph K

We expect it to be possible of using an algorithm like the one given above to realize the search for and substi-
tution of concretely speciÞed software components for the corresponding abstractly speciÞed ones within a
software system to be speciÞed. Of course, some problems still are to be solved as mentioned in chapter 2 and
discussed in the next chapter 6.

6 Main Challenges for Future Research

As indicated in chapter 2 already there exist some problems wrt comparison of software components. Due to
our goal of specifying search patterns in very early design stages it can not be expected to get exact matches
between those and existing component descriptions. Therefore, similarities between speciÞcations have to be
investigated. Finding and comparing component speciÞcations, even possibly by automated tool support later
on, requires mechanisms for computational detection of similarity. First approaches wrt such mechanisms are

enterPIN

ATMachine

code startTransaction

UserInterface

readCard Safe

IDdevice

BanklistAccount

namestring

BankServerreadCustomerInfo

serves

Account
owns

Customer
holds

addressstring

H

(BNo, int)
(PIN, int)

(KNo, int)

Conclusions and Future Work

performed in the area of analogical and case-based reasoning (cf. Spanoudakis et.al. (1996), Bergmann and
Eisenecker (1995)). The main concept of these approaches is the computation of distance or similarity metrics.
In our approach a component is expected to be described not only by its interface but also by its contents. The
description contains component artifacts, that is all UML model elements used to describe components. An
overall distance metric then is an aggregation of the distance metrics of all component artifacts.

One of the main problems of characterizing similarities is the acquisition of semantical information about soft-
ware components. Spanoudakis et.al. (1996) claim that similarities between component artifacts can be
detected using their classiÞcation, generalization and attribution. Generalization and attribution can automati-
cally be extracted from the most object-oriented design models. ClassiÞcation is expressed through instance-
of relations. Many object-oriented models support the instance-of relation only between simple instances and
their classes. What we need is a notion of meta classes, that is classes at a certain meta level, in order to clas-
sify classes as instances of such meta classes. For the Þrst time UML introduces a meta model (cf. Booch
(1997B)) providing information by classifying component artifacts according to classes, states, operations etc.
Further, classiÞcation can be achieved by using UML stereotypes which can be seen as user deÞned extensions
to the UML meta model. There already exist predeÞned stereotypes like actor, interface object, entity object or
control object the use of which can improve classiÞcation dramatically.

A very important attribute of component artifacts is the componentÕs name containing useful semantical infor-
mation. Unfortunately, it is not unique in that software developers may use different vocabularies as well as
synonyms or homonyms (the opposite of synonyms). For this reason we plan to integrate "of-the-shelf" and
domain speciÞc lexical databases to improve the usability of names during the search. These databases like
WordNet (cf. Miller et.al. (1990)) already contain relations like synonyms, antonyms, hyponyms etc.

The requirements for characterizing similarities between software component speciÞcations are complex wrt
our goal of substituting found component speciÞcations into the software speciÞcation existing so far, espe-
cially, when considering also automated tool support for the future as well. Some future work still has to be
done in order to realize practically the ideas presented in this paper in complex and realistic software design
processes. The intuitive, formal and practical foundations by graph rewrite systems, however, encourage much
to reÞne and Þnally apply the approach given in this contribution.

7 Conclusions and Future Work

A new approach for supporting the software engineer during the software design at early speciÞcation stages
has been proposed in this paper. The idea is to specify not all parts of the system to be designed in a concrete
manner but, instead, to specify some of those in a very abstract way. The goal is to use these as search patterns
in order to Þnd corresponding concretely speciÞed components which can then be substituted for the former
ones. This intuitive understanding could be underpinned by a formalization of this process by graphs and
graph rewrite rules according to the algebraic double pushout approach. Finally, also the practical applicability
of the approach could be shown and, even, an idea of automation could be sketched very coarsely.

The approach presented in this contribution will be investigated much more deeply in future work, also a more
complex case study should be considered. Further, the solution ideas sketched in chapter 6 wrt the problems
concerning similarities between software components will be elaborated much more precisely. We have used a
speciÞcation expressed as an UML class diagram for demonstration. Beyond the semantics of UML class dia-
grams, however, one additionally could use other types of diagrams offered by UML for specifying software
components in a more detailed way. Through a corresponding formalization by graphs and graph rewrite rules
one can expect correct speciÞcation steps as well within an even more complex software design process.

The approach presented in this contribution to us seems to be very promising wrt a more understandable, cor-
rect and comfortable software design process.

Acknowledgments

We would like to thank Rainer Unland for his support wrt this work.

8 References

[1] Arefi, F., Milani, M., and Stary, Ch., 1991, ÒTowards Customized User Interface Design Environ-
mentsÒ, Journal of Visual Languages and Computing, IEEE, pp. 146-151.

[2] Bergmann, R. and Eisenecker, U., 1995, ÒCase-Based Reasoning for Supporting the Reuse of Object-
Oriented Software: A Case StudyÒ, Proceedings der 3. Deutschen Expertensystemtagung, XPS-95, In-
fix-Verlag, pp. 152-169 (in German).

References

[3] Booch, G., 1994, ÒObject-Oriented Analysis and Design with ApplicationsÒ, Benjamin Cummings,
Redwood City.

[4] Booch, G., Jacobsen, I., and Rumbaugh, G., eds., 1997A, ÒUML Summary (Version 1.1)Ò, Rational
Cooperation, Santa Clara, http://www.rational.com.

[5] Booch, G., Jacobsen, I., and Rumbaugh, G., eds., 1997B, ÒUML Semantics (Version 1.1)Ò, Rational
Cooperation, Santa Clara, http://www.rational.com.

[6] Engels, G., Gall, R., Nagl, M., and Sch�fer, W., 1983, ÒSoftware Specification Using Graph Gram-
marsÒ, Osnabr�cker Schriften zur Mathematik, Reihe Informatik, Dept. of Mathematics, University of
Osnabr�ck, No. 9.

[7] Engels, G. and Sch�fer, W., 1989, ÒProgrammentwicklungsumgebungen - Konzepte und Realis-
ierungÒ, Teubner.

[8] Freund, R., Haberstroh, B., and Stary, Ch., 1992, ÒApplying Graph Grammars for Task-Oriented User
Interface DevelopmentÒ, Proceedings IEEE Conference on Computing and Information ICCI'92,
W.W.Koczkodaj et.~al., eds., pp. 389-392.

[9] Goedicke, M., 1993, ÒOn the Structure of Software Description Languages: A Component Oriented
ViewÓ, Habilitation Thesis, Technical Report No. 473/1993, Dept. of Computer Science, University
of Dortmund.

[10] Goedicke, M., Sucrow, B.E., 1996, ÒTowards a Formal Specification Method for Graphical User In-
terfaces Using Modularized Graph GrammarsÓ, Proceedings of the Eighth International Workshop on
Software SpeciÞcation and Design, IEEE Computer Society, IEEE Computer Society Press, March,
22-23; Schloss Velen, Germany, pp. 56-65.

[11] Gogolla, M. and Parisi-Presicce, F., 1998, ÒState Diagrams in UML - A Formal Semantics using
Graph TransformationÒ, Proceedings ICSE'98 Workshop on Precise Semantics of Modeling Tech-
niques (PSMT'98), Broy, M., Coleman, D., Maibaum, T., and Rumpe, B., Eds., Technical University
of Munich, Technical Report TUM-I9803, pp. 55-72.

[12] Jacobsen, I., Christerson, M., Jonsson, P., and Overgaard, G.G., 1992, ÒObject-Oriented Software En-
gineeringÒ, Addison-Wesley.

[13] Miller, G.A., Beckwith, R., Fellbaum, Ch., Gross, D., and Miller, K.J., 1990, ÒIntroduction to Word-
Net: an on-line lexical database.Ò International Journal of Lexicography 3 (4), pp. 235 - 244.

[14] Nowak, U., P�hle, U., Roitzsch, R., and Sucrow, B.E., 1996, ÒFormal Specification of the ZIB-GUI
Using Graph GrammmarsÓ (in German), Workshop ÔÕSoftware Engineering im Scientific ComputingÕ,
Hamburg, Germany, June 6-8, 1995, Mackens, W. and Rump, S.M., eds., Vieweg, pp. 290-296.

[15] Richter, M., 1995, ÒClass Structure Graphs for Object-Oriented Design and ImplementationÒ, Tech-
nical Report, ifi-95.01, University of Zurich.

[16] Rozenberg, G., ed., 1997, ÒHandbook of Graph Grammars and Computing by Graph TransformationÒ,
World Scientific, vol. 1.

[17] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., 1991, ÒObject-Oriented Mod-
eling and DesignÒ, Prentice Hall, Englewood Cliffs.

[18] Spanoudakis, G. and Constantopoulos, P., 1996, ÒAnalogical Reuse of Requirements Specifications:
A Computational ModelÒ, Applied Artificial Intelligence: An International Journal, Vol. 10, No. 4,
pp. 281-306.

[19] Sucrow, B.E., 1996A, ÒFormal Specification of Graphical User Interfaces Using Graph GrammarsÓ
(in German), Workshop ÔÕSoftware Engineering im Scientific ComputingÕ, Hamburg, Germany, June
6-8, 1995, Mackens, W. and Rump, S.M. , Eds., Vieweg, 279-289.

[20] Sucrow, B.E., 1996B, ÒTowards an Integration of Software-Ergonomic Aspects in Formal Specifica-
tions of Graphical User InterfacesÓ, Proceedings of the Second World Conference on Integrated De-
sign & Process Technology, Vol. 1, Society for Design and Process Science, Austin, Texas, December
1-4, pp. 194-201.

[21] Sucrow, B.E., 1997, ÒFormal Specification of Human-Computer Interaction by Graph Grammars un-
der Consideration of Information ResourcesÓ, Proceedings of the 1997 Automated Software Engineer-
ing Conference (ASEÕ97), IEEE Computer Society, November 1-5, pp. 28-35.

[22] Sucrow, B.E., 1998A, ÒOn Integrating Software-Ergonomic Aspects in the Specification Process of
Graphical User InterfacesÓ, Accepted for publication in Transactions of the SDPS Journal of Integrat-
ed Design and Process Science, Society for Design and Process Science, IEEE Computer Society
Press, 1998.

[23] Sucrow, B.E., 1998B, ÒRefining Formal Specifications of Human-Computer Interaction by Graph Re-
write RulesÓ, Fundamental Approaches of Software Engineering , Egidio Astesiano (Ed.), First Inter-
national Conference, FASEÕ98, Held as Part of the of the Joint European Conferences on Theory and
Practice of Software, ETAPSÕ98, Lisbon, Portugal, March/April 1998, Proceedings.

